On a class of generalized (k, u1)-contact metric manifolds
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Abstract. We classify the 3-dimensional generalized (s, 1)-contact metric
manifolds, which satisfy the condition ||grads|| =const.(3 0). This class of
manifolds is determined by two arbitrary functions of one variable.

1. Introduction. The tangent sphere bundle, of a Riemaniann manifold of
constant sectional curvature admits a contact metric structure (1,£,¢,g) such
that the characteristic vector field £ belongs to the (k, x)-nullity distribution, for
some real numbers k and p. This means that the curvature tensor R satisfies the
condition

(%) R(X,Y)E = w[n(¥)X — n(X)Y] + p[n(Y)hX —n(X)hY]

for any vector fields X and Y, where h denotes, up to a scaling factor, the Lie
derivative of the structure tensor field ¢ in the direction of £. The class of con-
tact metric manifolds which satisfy (+) has been classified in all dimensions, see
[21,[3],[4].

On the other hand, the existence of 3-dimensional contact metric manifolds M
satisfying (*), with &,z non constant smooth functions on M, has been proved
in [7], through the construction of examples. (In [7] it is also proved that for
dimensions greater than 3 such manifolds do no exist). This class of Riemannian
manifolds seems to be particulary large and we call such a manifold a generalized
(k, p)-contact metric manifold (generalized (x, u)-c.m.m., in short).

.In §3 of the present paper we give more examples of generalized (&, p)-c.m.m.,
with the additional property ||gradk| =constant. Moreover, we remark that the
condition ||gradk|| =constant, remains invariant under a D-homothetic deforma-

tion. Hence for any positive real number we can construct at least two such man-
ifolds. The existence of these examples has been our motivation for their study.
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Initially, we prove that there exist two types of generalized (k,u)-c.m.m. with
||lgradk|| =constant # 0. Type A, where p = 2(1 — /1 — k) and type B, where
1= 2(14++/1 — &). Next, in §4 we prove that such a manifold is covered by a global
chart, in the coordinates of which we determine the functions x and u. In §5 we
globally construct these manifolds. Finally, introducing a second transformation
in §6, we succeed each member of this class is obtained by the first two examples
given in §3, under such a transformation and a D-homothetic deformation.

All manifolds are assumed to be connected.

2. Preliminaries. In this section we collect some basic facts about contact
metric manifolds. We refer to [1] for more detailed treatment. A differential (2m-+1)
-dimensional manifold M is called a contact metric manifold if it carries a global
differential 1-form 7 such that n A (dn)™ # 0 everywhere. It is known that a
contact manifold admits an almost contact metric structure (1,£, ¢, g), i.e. a global
vector field £, which will be called the characteristic vector field, a (1,1)-tensor
field ¢ and a Riemannian metric g such that n(§) = 1, ¢? = —Id+n®¢§
and g(¢X, ¢Y) = g(X,Y) — n(X)n(Y) for all vector fields X,Y on M. Moreover
(m,€&, ¢, g) can be chosen such that dn(X,Y) = g(X, ¢Y). The manifold M together
with the structure tensors (7,&, ¢, g) is called a contact metric manifold and it is
dencted by M(n,£,,g). Following [1], we define on M the (1,1)-tensor fields &
end I by h = 3(L¢¢) and | = R(.,£)§, where L¢ is the Lie differentiation in the
direction of £ and R the curvature tensor. The tensor fields A, are self adjoint and
satisfy h€ = I = 0, Trh = 0, Tréh = 0, h¢ + ¢h = 0,

(1) Tri=g(Q¢, %),

where () is the Ricci operator. Since h anti-commutes with ¢, if X is an eigenvec-
tor of h corresponding to the eigenvalue A, then ¢X is also an eigenvector of h
corresponding to the eigenvalue —\. If V is the Riemannian connection of g, then
Vg,i) = 0,

(2) Vx§=—¢X — phX (and so V£ =0),

(3) Veh = ¢ — ¢l — ph2.

Particularly, for the 3-dimensional case, the following formulas are valid ([6])
@ w=(t-ne, i<y,

(5) Z(inh)Xi = ¢Qk,

where X;,2=1,2,3, is an arbitrary orthonormal frame.
By a generalized (k, j)-contact metric manifold we mean a 3-dimensional contact
metric manifold such that

(6) R(X,Y)¢=kn(Y)X —n(X)Y]+ pn(Y)RX —n(X)RY], X, YeX(M),



where &, 1 are smooth functions on M, independent of the choice of vector fields
X and Y.

The formulas in the next Lemma are known (see [5], [7]). For the sake of com-
pleteness we will give the outline of their proofs.

Lemma 1. On any generalized (k, g)-c.m.m. the following formulas are valid

Trl

(7) R=(k-1)¢%, Kk=—-<1
(8) €k =0, hgradu = grads.
Moreover, if k # 1 everywhere on M, then
(9) va = —(A + 1)¢X, vquf = (1 —_ A)X,
XA XA

(10) VeX =-EoX, VesX=LxX, Vxx=9226X, Vexox = 2%,
(1) VexX=-326X+(-1g Vxox=-22x 4 (v 1,
(12) [6X]=(1+2-DeX, [oX]=(-1+5)x,

_ 4D, X
(13) [X,¢X]= —WX_F X X + 2¢,

where (£, X, ¢X) is a local orthonormal basis of eigenvectors of h, such that R X =
AX, A=+1-k>0.

Proof. Using (6), we easily get R(€, X)Y = Klg(X, Y)e—n(¥) X]+ulg(hX, Y )e~
n(Y)hX] and so by the definition of Q and (1) we get Q¢ = 2x€ and Trl = 2k.
This and (4) imply (7). Using (6), Q¢ = 2x£ and the well known formula

R(X,Y)Z = ¢(Y, 2)QX — g(X, 2)QY +9(QY, 2)X
~9(QX, 2)Y — 2(¢(¥, 2)X ~ (X, 2)Y)

for Y =27 =¢, we get
(14) Q=al +bn®E&+ ph,

where § is the scalar curvature, @ = (S — 2«) and b = 2-21(65 — 5). Using (6),
#? = —Id+n ® £ and the definition of  we find I = —k@* + ph. This, together
with (3) , (7) and ho+¢h = 0 give V¢h = phe. Differentiating 2 = (k—1)¢2 with
respect to £ and using V¢ = 0 and the last equation we get the first equation of
(8). Differentiating (14) with respect to an orthonormal basis X;,i = 1,2, 3, and
using (2), Trhe¢ = 0, ¢§ = R =0, Q€ = 2x€ and (5) we find

Z(in Q)X; = grada + (£b)€ + hgrady.



Comparing this with the well known formula },(Vx,Q)X; = 3gradS, we get
hgradp = gradx. Relations (9) are immediate consequences of (2). The first two
relations of (10) are obtained from (6), for Y = £, and the definition of the curva-
ture tensor. Using (5) we get the last two relations of (10). Relations (11) follow
from (9) and (10), while (12) and (13) are immediate consequences of (9)-(11). We
denote that the existence of the local basis (£, X,$X) is proved in [7].

3. Examples. 1. (Type A). We consider the 3-dimensional manifold M- =
{(z,y,2)eR®/z < 1}, where (z,y, 2) are the standard coordinates in R®. The 1-
form n = dz + 2ydz defines a contact structure on M with characteristic vector
field £ = ;—z. Let g, ¢ be the Riemannian metric and the (1,1)-tensor field given by

1 0 —a 0 —a ab
g=1| 0 1 —b , ¢=| 0 —b 1+0b°
—a —b 14+a2+8° 0 -1 b

with respect to the basis ;9‘9;, %, %, where ¢ = —2y and b = 2z/1 — 2+ Z'(lyl_zi-
The tensor fields (7,£, ¢, g) define a generalized (k, p)-contact metric manifold
with K = z (and so ||gradk|| = 1) and p=2(1 — /1 —2).

2. (Type B). On the manifold M of the previous example we define the tensor
fields (1,€, ¢, g) by = dz — 2ydz, £ = £,

1 0 a 0 —a ab
g=l 0 1 =3 , o= 0 b —-1-8% |.
a —b l+a?2+0d? 0 1 —b

Then M(n,&, ¢,9) is a generalized (k, p)-contact metric manifold with £ = 2 and
p=2(14++v1-2).

3. Let M(n,&, ¢,9) be a contact metric manifold. By a D,-homothetic deforma-
tion (see [8],[2]) we mean a change of structure tensors of the form

_ = 1 — =
f=an, £=-§ é=¢, g=eg+ala—1)nemn,

where a is a positive number.The curvature tensor R and the tensor h transform in
the following manner [2]: A = 1k and aR(X,Y)€ = R(X,Y)E+ (a — 1)2[p(Y) X —
NX)Y] — (- DI(Vx DY — (Vy$)X +n(X)(¥ +K¥) - n(¥)(X + X)) for any
X,Y. Additionally, it is well known [9, pp 446,447], that any 3-dimensional contact
metric manifold satisfies (Vx¢)Y = g(X +hX,Y)¢ —n(Y)(X +hX). Using these
we have that if M (7, £, ¢, g) is a generalized (k, p)-c.m.m., then M(7,£, ¢, §) is also
a generalized (R, i)-c.m.m. with § = -'“—T-ff:"—l and i = %a;ll ([7]). Therefore, if
M(n,€,,9) satisfies ||grads], = d (const.), then M(7, , 3.5) satisfies [|gradill; =
da~%. It follows from the fact that, if (§,X,¢X) is an orthonormal basis with
respect to g, then (1¢, %X : :};¢X ) is an orthonormal basis with respect to 3.
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As a result of the above and examples 1,2, we have the following Proposition.

Proposition 2. For any positive number, there exist at least two generalized
(K, t)-c.m.m. with ||gradk|| =constant 5 0.

Remark 1. (i) Using the fact that, any generalized (k, x)-c.m.m. with llgradx||, =
d # 0 (const.) is D,-deformed in another generalized (R, B)-c.m.m. with
llgradr||; = da~%, for any positive a and choosing @ = d#, it is enough to study
those generalized (%, i£)-c.m.m. with ||gradk|| = 1.
(ii) If d = 0, then & is constant. Therefore, if £ = 1, then M is a Sasakian manifold
[2], while for & 5 1, u =constant [7].
(i) A D,-homothetic deformation preserves the type of a generalized (K, p)-
contact metric manifold with [|grads|| =const.

4. Main results. From now on, we suppose that M (m,€,9,9) is a generalized
(%, p)-contact metric manifold with ||gradk|| = 1. Because hgrady = grads, we
have A 7 0 and so k # 1 everywhere on M as it follows from (7). We denote by
(§,X,9X) a local orthonormal frame of eigenvectors of h such that X = A\X ,
A = +v1—£ > 0. The next Lemma inform us that there exist 2-types of such
manifolds.

Lemma 3. Let M be a generalized (x,u)-c.m.m. with ||grads|| = 1. Then
p=2(1—A) or p=2(1+ A). In the first case (type A), the following are valid,
Xk=1,XKk=0,[,X] = 20X, [£,6X] =0 and [X,¢pX] = — L ¢X + 2¢.

In the second case (type B), the following are valid,
$XKk=1Xk=0,[¢,X]=0,[¢,$X] = 22X and [X,$X]= gk X +2¢.

Proof. Using £k = 0 and ||gradx|| = 1 we have

(15) grads = (Xr)X + (X k)pX
and
(16) (XK)? + (¢XK)2 =1.

Differentiating (16) with respect to £ and using (8) and (12) we get successively

(EXK)(XK) + ((6XK)(0XK) =0
(& X&) (X k) + ([, 0X]r)(¢XK) =0
MXk)(¢XK) =0
and since A # 0,
(17) (Xr)(¢Xk) =0.

We consider the open sets

A={PeM/(XK)(P) #0} and B={PeM/($Xk)(P)# 0}.



Because ||gradk|| # 0, we have ANB = ) and AU B = M. Moreover, by the
connectness of M we get A= M and B =0 or B= M and A = (). We distinguish
two cases.

Case 1. Let A= M. Then, (17) gives X« = 0. Using this, Xx # 0, £k = 0, then
the second of (12) gives p = 2(1— ) and [£, $X] = 0. Moreover, from (16) we have
Xk = =£1. Without loss of generality we may assume that X« = 1, differently we
choose the basis (£, —X,—¢X). Differentiating \?> = 1 — x and using X« = 1 and
¢Xk =0 we get X\ = —5- and pX )\ = 0. Substituting these in (12) and (13) we
have [£, X] = 206X and [X, $X]| = —LypX + 2¢.

Case 2. Let B = M. Then ¢Xk # 0 and Xk = 0. Working as in case 1 we finally
get p = 2(1+ ), Xk = 1, [§,¢6X] = 2)X and [X,¢X] = 77X + 2£. This
completes the proof of the Lemma.

Remark 2. In the case of type A (1 = 2(1— X)), we have X = grads and in the
case of type B (1 = 2(1+ X)), we have X = —¢gradx, as they follow from (15).
Because the function & is globally defined on M, we conclude that the orthonormal
frame (£, X, ¢X) of eingenvectors of & is globally defined on M.

Remark 2, leads us to the following Proposition.

Proposition 4. Any generalized (%, 1)-c.m.m. with ||graedk|| =const.# 0 is par-
allelizable.

In the next Lemma, we construct a suitable chart, whose domain is the whole
of the manifold.

Lemma 5. Let M be a generalized (k, p)-c.m.m. with ||gradk|| = 1. Then, there
exists a chart (z,¥, z) whose domain covers M. Moreover,x = z, z < 1, everywhere
on M.

Proof. According to Lemma 3 we distinguish two cases.
Case 1. Let pp = 2(1 — X). Because [, ¢X] = 0, the distribution which is obtained
by ¢X and £ is integrable. So for any point PeM there exists a chart {V, (Z,7,2)}
at P, such that
&= %,(;SX: % and X—a;—_+b§y+c63

where a,b,c, (¢ # 0), are smooth functions on V Now, we consider on V the
linearly independent vector fields £,¢X, W = c= 34 An easy calculation implies
82 = 0,4 = 0 and so [¢X, W] = [(,W] = [£,4X] = 0. This means that there
exists a chart {U, (z,y,2')} at P such that £ = £ ,¢X g;,w =4Z.00U
we have £ = aaz = I,qbX ay = -3? and X = aaz +b + 6z,, as 11: follows
By £ = ¢Xk = 0 and
% = £k =0 we get %‘7 =1 and so k¥ = 2’ + d, where d is an integration constant.
The substitution z = 2’ + d, locally completes the proof of the Lemma in case 1.

fromW:%—-caizX—a-gg—ba Using it, XK,—].



Case 2. Let p = 2(1+ )). Working, as in case 1, for the integrable distribution,
which is obtained by £ and X ([¢,X] = 0), we finally find that there exists a
chart (z,9,2) at PeM on whose domain U, k = 2,£ = g-,X 3— and ¢X =

a’ 8.7: +b' 5 = Thegk az= where o', are smooth functions on M. Since A = /I — &, it is
obvious that z<lin both cases.

Now, we will prove that domain U of the above chart can be extended such
as to be the whole of M. We will prove case 1, as far as the proof of case 2 is
analogous. We suppose that (A, %) is a chart at P such that the open set A is the
largest possible extension of U. Let A # M. Then, for any gedA, there exists ga.s
we have proved) a chart (V, 'q’)(a: ¥,Z)) at g, such that k=Zt=%,0X =
On ANV wehave 2=2,£ = 5‘95:— and ¢X = . From these, we get
(Z,9,2) = (z+ c1,¥ + 2, 2), Where ¢1,Co are mtegrat:on constants We consider
the smooth function w on AUV, such that w = % on A and w = — (€1, ¢2,0)
on V. Then, (AU V,w) defines a new chart of M at P, whose domaln AUV D A.
By this contradiction, we conclude that A = M. This completes the proof of the
Lemma.

An immediate and expected consequence of the above result is the following
Corollary.

Corollary 6. There are no compact, generalized (%, p)-contact metric manifolds
with ||gradk|| = const. # 0.

Now, we will state and prove our main result.

Theorem 7. Let M(,&, ¢, g) be a 3-dimensional generalized (, 11)-contact met-
ric manifold with [|gradx|| = 1. Then M is covered by a chart (z,y,2),z < 1,
such that Kk = 2z and p = 2(1 — /1—2) or g = 2(1 + +/T = 2). In the first case
(£ =2(1 — /1 - 2)), the following are valid,

o o] o 6 o)
= — = — = aqg—
£ 3z’ X and X = a, -l— b— 8
In the second case (u = 2(1 + +/1 — 2)), the following are valid,
0 d , 0 8 &
= — = — X = b
& 37’ X = and ¢ a + By Fi a2’

where a(z, y,z) =2y + f(2), o'(z,9,2) =2y +h(2) b(z,y,2) =¥ (z,y,2) =
22v/1 — 2+ g5y +7(2) and f,r, h are smooth functions of z.

Proof. Because of Lemma 5 (see, also its proof) we just have to calculate func-
tions a,b,a’,d’.
Let y2 = 2(1 —+/1 — z). Then
da O ab o da 8 ab 8

€, X]= ST %23y and [X,¢X]= "Bz Gyoy



Combining these, with [{, X] = 2X¢X = 2A£ and [X,¢X] = —z56X + 26 =
-;—igg% -+ 23‘9; (see, Lemma 3), we get

da b da, ab 1

a-— s a_z\, 6—y'—'-2 and b—y--—-m
It follows from this system that, @ = —2y+ f(z) and b = 2z/T — 2+ 4—(19_7) +r(2),
where f(2),r(2) are integration functions. :
Now, let p = 2(1 4+ +/1 — z). We have

da' &8 O o 8ad 8 O 8
——+——— and [X,¢X]= — — 4+ — —.

= my M BXl=g 5
Combining these, with [£,0X] = 20X = 2)\3% and [X,¢X] = gz X +2 =
4_%.'53% +23% we get

da’ ob' da’ ov' 1

oz Bz " By and B = Do

and so a'(z,y,2) = 2y + h(2) and b'(z,y,2) = 2z/T— 2 + 4—(1_Lz) + 7(z), where
h(z),p(z) are integration functions. This competes the proof of the Theorem.

Remark 3. The functions a, b,a’,d’ of Theorem 7 determine the manifold com-
pletely, as we will see in the next paragraph. There, using the conclusion of Lemma
5, we will construct in R® all the generalized (k, x)-c.m.m. with [|gradk|| = 1.

5. Construction. Let M = {(z,y,2)eR®/2 < 1} and f,r : M — R be arbitrary
functions of 2. We consider the linearly independent vector fields

8 0. .0 8 98
oz’ 2T %% 8y 82’ es_ay’

where a(z,y, 2) = =2y + f(2),b(z,y,2) = 221 — 2+ iy T 7(2). Let g be the
Riemannian metric defined by g(e;,e;) = 8;;,(4,7 = 1,2,3), V the Riemannian
connection and R the curvature tensor of g. Putting A = /1 — 2, we easily get
le1, €3] = 0, [e1, e2] = 2)e, [ea, €3] = —3res +2e;. Moreover, we define the 1-form
7 and the (1,1)-tensor field ¢ by 7(.) = g(.,e1) and ¢e; = 0, des = e3, pes = —es.
Because 7 A dn # 0 everywhere on M, 7 is a contact form. Using the linearity
of ¢, dn and g we find n(e;) = 1,¢°Z = —Z + n(2)e1,dn(Z, W) = g(Z, ¢W)
and ¢(6Z, ¢W) = g(Z, W) — 1(Z)n(W) for any Z,WeX(M). Hence M(1,e1,6,9)
defines a contact metric structure on M. Putting £ = e;, X = e5,¢X = e3 and
using the well known formula

e =

29(VyZ,W)=Yg(Z, W)+ Zg(W,Y) — Wy(Y, Z)
—9(Y,[2,W]) — 9(Z,[Y, W]) + g(W, [V, Z)),



we find the formulas (9)-(13). Moreover, for the tensor field h we get h§ = 0,hX =
AX,h¢X = —A¢X. Using the above relations and the definition of the curvature
tensor, we finally get that M(n,£, ¢, g) is a generalized (k, u)-c.m.m. (of type A)
withk =zand p=2(1 —/1-2).

In order to construct an arbitrary generalized (k,u)-c.m.m. with ||grads| = 1
of type B, we work analogously on the same manifold M, considering the vector

fields
2 es = g e a—(2-+ba 0
83'51 2—“ay 3 = 6:(] a

where o' = 2y + f(2), ' = 28I~z + g7%55 + 7(2). The tensor fields g,7, ¢
are defined by g(e;,e;) = 6i;,(¢,5 = 1,2,3), n(.) = g(.,e1), e1 = 0, ez = e3 and
des = —ez. Putting { = e;, X = ez and ¢X = e3 we finally find that M(n,&, ¢, g)
is a generalized (k,u)-c.m.m. (of type B), with k = z and g = 2(1 + 1 — 2).

€] =

Remark 4. The examples 1 and 2 of §3 correspond in the special case f =
0,7=0.

In §3 we have seen that a D,-homothetic deformation tranforms a general-
ized (k,u)-c.m.m. with ||gradk|| = 1 to another generalized (R, [)-c.m.m. with
|lgradi| = d # 1(const.). In the next paragraph we will introduce a second
transformation, which transforms a generalized (k,u)-c.m.m. M(n,§,6,g) with
|lgradk]| = 1 to another generalized (k, p)-c.m.m. M(7, £, ¢, §) with the same &, p,
llgradk||; = 1 and of the same type.

6. Another transformation. Let M (7, £, ¢, g) be a generalized (k, 1)-c.m.m.
with ||gradk|| = 1, and f,r smooth functions on M such that £f = &r = 0 and
(¢gradk) f = (¢pgradk)r = 0. We consider the vector fields

£=¢ X =grade+ f& +r(pgrads), Y = dgrads
and we define the tensor fields g, 7, ¢ as follows,
96,6 =9(X,X) =3(Y,¥) = 1,56, X) = 9(£.¥) = 3(X,Y) =0
ﬁ(~):§(-,£), ¢£=Oa¢’X:Y1¢Y:_X
Then M(7,£,$,7) is a generalized (k, p)-c.m.m. with ||gradk||; = 1 (with the same
Ky i)

To prove it, we distinguish two cases: g = 2(1—\) and u = 2(1+)). We will prove
the first case, because the proof of the second case is similar. Let g = 2(1—2). Then,
as we have seen in Lemma 3, {k = 0, (gradk)k = 1, (¢grads)s = 0. Therefore,
there exists a global coordmate system (z,¥, 2), (see, Theorem 7 and 1ts proof)
such that , kK = 2,§ = & 8. ogradk = —‘9— and gradk = a.aI +b3y + az’ where
a = =2y +h(2),b = 22v1— 2+ g5t —i— v(z) and h,v smooth functions of z.

Then X = (—2y+ F(2)) £ + (2avVI—2+ it + G(2)) & + £ and ¥ = ey



where F' = f+h and G = r +v. According to the construction of §5, M(7,£, ¢, )
is also a generalized (k, u)-c.m.m. with K = z and p = 2(1 — /1 —2).

Remark 5. Any generalized (k, p)-c.m.m. with ||gradk|| =const. # O can be
obtained by examples 1 and 2 of §3, under the above transformation and a D,-
homothetic deformation.
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